EyePy: A Computationally Efficient and Open-Source

Solution for Webcam-Based Eye Tracking

Chenkai Zhang

September 24, 2024

Abstract

Eye tracking technologies are technology that predicts a user’s gaze location, and its
application ranges from marketing to neuroscience. However, current solutions often
rely on expensive hardware, limiting the access to such technologies from researchers
and students. This paper introduces ”"EyePy,” a computationally efficient, webcam-
based eye tracking solution utilizing machine learning and computer vision techniques
to offer a cost-effective alternative. EyePy uses traditional machine learning methods
to predict gaze locations effectively in real time. It differs from previous webcam-
based alternatives in that it does not use CNN, which is computationally expensive,
and accounts for head orientation, enhancing the accuracy of gaze estimation. EyePy
achieves competitive performance compared to previous more computationally heavy
systems without sacrificing precision of the model. EyePy aims to democratize eye

tracking technology by offering an open source and easy to deploy solution.

Keywords: Machine Learning, Eye Tracking, Webcam-Based Eye Tracking

Contents

1 Introduction 3
2 Background and Related Works 4
2.1 Traditional Eye Tracking Methods 4
2.1.1 Optical Tracking 4

2.1.2 Electrooculography (EOG), 4

2.1.3 Limitations of Traditional Methods 4

2.2 Webcam-Based Eye Tracking Methods and Its Limitations)

3 Method 5
3.1 Environment Setup 5
3.2 Implementation 6
3.2.1 Facial Data Processing L. 6

3.2.2 Model Trainingo 7

3.2.3 Gaze Prediction 8

3.3 Validation Technique 8
3.3.1 Stability Test 8

3.3.2 Precision Test 9

3.4 Degree Calculation 9

4 Results 9
4.1 Results of Stability Test L 10
4.2 Result of Precision Test 11
4.3 Processing Speed 11

5 Conclusions and Future Work 12
References 13

1 Introduction

Eye Tracking (ET) is a technology that predicts a user’s gaze position using a combination of
hardware and software. ET has found diverse applications ranging from marketing to neuro-
science. In marketing, ET is used to help marketers have a better understanding of consumer
behavior by tracking their focus. However, ET is especially prominent in neuroscience and
cognitive research (Popa et al., 2015). It’s shown good performance in assessing cognitive
abilities, revealing distinct types of mnemonic information (Hannula et al., 2010) There has
been research on using ET to diagnose traumatic brain injuries, concussions (Samadani et
al., 2015) (Snegireva, Derman, Patricios, & Welman, 2018), dementia (Hutton, Nagel, &
Loewenson, 1984) (Mengoudi et al., 2020), and autism (Falck-Ytter, Bolte, & Gredebéck,
2013) (Guillon, Hadjikhani, Baduel, & Rog é, 2014).

However, professional eye trackers are a significant barrier to entry for aspiring re-
searchers. Their cost and complicated setup could deter researchers from using ET methods.
With the demand for a simpler solution, there are various products attempting to use web
cameras (webcams) for gaze tracking. Sadly, current implementations of webcam-based gaze
tracking often come with its own set of limitations, including inferior accuracy and being
computationally expensive.

This study presents a webcam-based gaze tracking solution that achieves good accuracy
while remaining computationally efficient. It achieves this by also taking in head rotation
into account for prediction. The vision for this project is to have a simple to deploy solution

that will help push ET research and its adoption in other fields forward.

2 Background and Related Works

2.1 Traditional Eye Tracking Methods

There are two main traditional methods to eye tracking. Optical tracking and Electroocu-

lography.

2.1.1 Optical Tracking

Optical tracking methods work by first shining infrared light at the eye then processing
the corneal reflection and pupil’s position relative to the eye socket. This is one of the
most robust and wide spread eye tracking methods. However, such systems often require
complicated hardware setups and sometimes also require head stabilization device, such as

head mounts or chin rests.

2.1.2 Electrooculography (EOG)

Electrooculography (EOG) is another traditional eye tracking method. It works by attaching
electrodes around the eye and utilizing the fact that the retina is electrically polarized to
calculate the eye orientation. It is responsive but has less precise gaze predictions. Attaching

electrodes around the eye is also invasive to a extent.

2.1.3 Limitations of Traditional Methods

Although those traditional methods, especially optical tracking, have proven its effectiveness
in past real world studies, the requirement for eye tracking hardware are significant barriers to
entry for unpaid researchers and students looking to research in ET areas (Hessels & Hooge,
2019). Costing from $200 to over $10,000, the price represents a considerable expenditure

for researchers.

2.2 Webcam-Based Eye Tracking Methods and Its Limitations

One of the most practical implementation of webcam-based eye tracking is Search Gazer
(Papoutsaki, Laskey, & Huang, 2017). It is also a big inspiration for this project. However,
it’s written in JavaScript, which is less suited for data analysis and is mainly geared towards
website usage. Additionally, requiring a webpage to conduct studies makes the setup overly
complicated for simple research projects.

There are various studies that uses the CNN architecture for gaze prediction. One study
by Krafka achieved good accuracy with such prediction models (Krafka et al., 2016), Another
study by Gudi shows the efficiency achieved with a webcam-based eye tracking system using
a similar approach. (Gudi, Li, & van Gemert, 2020) These studies achieves reasonable
performance, however with the computationally heavy nature of deep learning models, they
could face challenges in real world usage.

While there are online platforms for ET based on webcams, those implementations often
come with cumbersome setup processes and are sometimes platform dependent (GazeRecorder,
2024). What’s more some implementations require a subscription to use (Real Eye, 2024)
(Eyeware Beam, 2024), going against the goal of reducing friction for ET research in the

first place, deterring researchers who are looking for a simple and straightforward process.

3 Method

3.1 Environment Setup

The development and testing environment includes the following packages:
e Python 3.12.4
e OpenCV 4.10.0

e NumPy 1.26.4

e Pygame 2.6.0

e Joblib 1.4.2

e scikit-learn 1.5.1

e Matplotlib 3.9.1

e scikit-image 0.24.0

e dlib 19.24.4

3.2 Implementation

The implementation of the gaze tracking system in this study includes three stages: facial

data processing, training the eye tracking model, and gaze prediction.

3.2.1 Facial Data Processing

This process begins with capturing the image of the face and feeding it through dlib’s facial
landmark detector by Adrian Rosebrock (Rosebrock, 2017).

After that, we use uses the GazeTracking library by Antoine Lamé (Lamé, 2022) to
extract the relative pupil position within the eye. The library has been modified to directly
take in the frame and facial landmarks instead of calculating facial landmarks again to reduce
redundant calculation.

Then the rotation vector of the head is calculated using the Efficient Perspective-n-Point
(EPnP) algorithm within OpenCV. Perspective-n-Point (PnP) is the problem of estimating
the pose of an object given a set of 3D points and their corresponding 2D projections. This
method projects the 3D points onto a 2D canvas to calculate the pose of the 3D object. The

core of this algorithm can be formulated as an optimization problem:

. .) o) 2
H}g}pZIHPrOJ(K(RXzH)) x|

6

The predefined 3D coordinates in this ap-
plication include locations of the nose tip,
chin, both outer eye corners, and the outer
mouse corners. The selected facial land-
marks and 3D coordinates are fed into the
function, and the function outputs the pitch

(tilt up or down) and yaw (turn left or right)
of the head.

3.2.2 Model Training

The model used in this study is ridge regres-
sion. The formula of ridge regression is given
by:

B=(XTX +)Xy

Ridge regression functions like ordinary least
squares regression but includes a penalty for
large coefficient through the regularization
parameter y. This makes it less likely to
overfit and produce more stable results. In
this study, ridge regression is used because
the noise in the captured data would likely

cause ordinary linear regression to overfit.

rl

‘ Initialize data collection ‘

—»‘ Capture face image ‘

i
| Run facial landmark detection (dlib) |

l
‘ Extract pupil position(modified GazeTracking) ‘

‘ Calculate head rotation vector (EPnP) ‘

Store data

No Enough images?

Yes

‘ Standardize input variables (StandardScaler) ‘

i

‘ Train ridge regression models ‘

i
‘ Store models and scalers(joblib files) ‘

‘ Load models and scalers ‘

—»‘ Capture frame from webcam ‘

)

‘ Run facial landmark detection (dlib) ‘

‘ Predict gaze locationusing model and landmarks ‘

Show KDE contour?

Ye;

‘ Show KDE contour }7

No

Yes X T
#{ Continue prediction? ‘

No

End

Figure 1: Implementation Flowchart
Two separate ridge regression models are

trained. One predicts the x coordinate using the head rotation vector and relative pupil
position in the x-axis. The other predicts the y coordinate using the rotation vector and

relative pupil position in the y-axis. The alpha could be changed and is defaulted to 1.

Greater weight is given to pupil position than head rotation. This weight is defaulted to
3:1 and could be adjusted accordingly.

The input variables are standardized using StandardScaler from scikit-learn before they
are fed into the model, This is done by subtracting the mean and dividing by the standard
deviation. The variables are standardized because the rotation vector and horizontal and
vertical ratios have different magnitudes of scale. Doing this ensures that both features
contribute equally to the model.

The trained model and scaler are then stored as joblib files.

3.2.3 Gaze Prediction

The gaze prediction begins with loading the joblib files of the model and scaler. The program
captures the frame from the webcam, pass it through dlib’s facial landmark detector, and
use the model and the landmarks to predict the gaze location in real time.

The program includes two optional features, one is to show the kernel density estimation
contour at 60% confidence level for the predicted gaze points over the last 0.5 second. The
other is to pass the predicted gaze points through a Kalman filter. Both functions help to

better visualize the user’s gaze behavior.

3.3 Validation Technique

Two validation methods are used to test the performance of the gaze tracking model, in-
cluding stability and precision. The model used for validation is trained with 10 calibration

points: two points at each corner of the screen and two in the center

3.3.1 Stability Test

After calibration, the subject is instructed to focus on a circle in the center of the screen

for 10 seconds. During this period, the gaze location is predicted and recorded. After that,

the Standard Deviation (STD), Mean Absolute Deviation (MAD), Bivariate Contour Ellipse

Area (BCEA), and Signal-to-Noise Ratio (SNR) of the gaze points are calculated.

3.3.2 Precision Test

For the precision test, the screen is split into a 5x5 grid. A random grid light up every 4
second. After a 2 second delay, the subject’s gaze data is recorded for 1 second. The program
checks whether the mean position of the points predicted during that second is within the
rectangle, and metrics similar to those in the static test are also calculated. That process is

repeated for 20 times, with a 1 second pause between each iteration.

3.4 Degree Calculation

To translate from the errors in pixel to errors in field of view in degrees for better comparison

with other studies, this formula is used to calculate the field of view angle for one pixel:

Pixel size/2
Angle (degrees) = 2 X arctan (ixel size/)

Viewing distance

4 Results

The performance of the gaze tracking model is assessed with the methods detailed in Sec-

tion 3.3

4.1 Results of Stability Test

Gaze Heatmap for Trial 1

1200

1000

800

600

Y Position

N
Number of Gaze Points

400

200

0 250 500 750 1000 1250 1500 1750
X Position

Figure 2: Heatmap

As shown in the Figure 2, the model achieved good accuracy, with Standard Deviation (STD)
in the x direction being 70.29 pixels and STD in the y direction being 89.16 pixel. The test
being conducted on a 16 inch screen with a 1920x1200 pixel resolution, which means that
the STD for x and y respectively is about 1.26 and 1.60 centimeters. The subject sat about
50 cm away from the screen during the process, using the formula from Section 3.4, We can
obtain the standard deviation of gaze points in degrees of visual angle to be 1.45° for x and

1.83° for y.

10

4.2 Result of Precision Test

Figure 3: Heatmap

As shown in the Figure 3 The mean of the predicted points ended up in the rectangle 19
out of the 20 trials. Demonstrating good precision, the system achieved a 95% accuracy
rate, surpassing the 78% rate reported in previous studies (Zheng & Usagawa, 2018). The
groupings also demonstrate similar stability displayed in the previous section, proving the

robustness of the model.

4.3 Processing Speed

The gaze prediction model runs at 30 frames per second (fps) on 13th Gen Intel i9-13900H
running on a single core. This result surpasses previous implementations using CNN which
achieved 10-15 fps (Krafka et al., 2016) (Gudi et al., 2020). Additionally, this test was
conducted without optimization for Python’s Global Interpreter Lock (GIL) and without

utilizing GPU acceleration. Future tests will explore multi-core and GPU-based optimiza-

11

tions to enhance performance further.

5 Conclusions and Future Work

This study showcase a webcam-based eye tracking system with both speed and accuracy sur-
passing previous implementations. The study achieves good computation efficiency through
the use of a simple ridge regression model for the pupil’s location within the eye and the
head rotation vector, which no previous study has taken into account.

This study shows the validness of traditional algorithms in the field of webcam-based eye
tracking, with potential for commercial application thanks to the gained performance.

However, there’s still much left to be done. As stated above, the model does not take
advantage of parallel processing or GPU acceleration, which significantly limits its perfor-
mance. Also, a future direction for the project would be to replace dlib with MediaPipe, a
more modern and flexible solution for facial landmark detection that performs better espe-
cially for real time applications.

The source code of the model is hosted on GitHub https://github.com/ck-zhang/

EyePy.

12

https://github.com/ck-zhang/EyePy
https://github.com/ck-zhang/EyePy

References

Eyeware beam. (2024). https://beam.eyeware.tech/. (Accessed: 2024-09-18)

Falck-Ytter, T., Bolte, S., & Gredebick, G. (2013). Eye tracking in early autism research.
Journal of neurodevelopmental disorders, 5, 1-13.

Gazerecorder. (2024). https://gazerecorder.com/gazerecorder/. (Accessed: 2024-09-
18)

Gudi, A., Li, X., & van Gemert, J. (2020). Efficiency in real-time webcam gaze tracking. In
Computer vision—eccv 2020 workshops: Glasgow, uk, august 23-28, 2020, proceedings,
part i 16 (pp. 529-543).

Guillon, Q., Hadjikhani, N., Baduel, S., & Rog é, B. (2014). Visual social attention in autism
spectrum disorder: Insights from eye tracking studies. Neuroscience € Biobehavioral
Reviews, 42, 279-297.

Hannula, D. E., Althoff, R. R., Warren, D. E., Riggs, L., Cohen, N. J., & Ryan, J. D.
(2010). Worth a glance: using eye movements to investigate the cognitive neuroscience
of memory. Frontiers in human neuroscience, 4, 166.

Hessels, R. S., & Hooge, I. T. (2019). Eye tracking in developmental cognitive neuroscience—
the good, the bad and the ugly. Developmental cognitive neuroscience, 40, 100710.

Hutton, J. T., Nagel, J., & Loewenson, R. B. (1984). Eye tracking dysfunction in alzheimer-
type dementia. Neurology, 34 (1), 99-99.

Krafka, K., Khosla, A., Kellnhofer, P., Kannan, H., Bhandarkar, S., Matusik, W., & Tor-
ralba, A. (2016). Eye tracking for everyone. In Proceedings of the ieee conference on
computer vision and pattern recognition (pp. 2176-2184).

Lamé, A. (2022). Gazetracking. https://github.com/antoinelame/GazeTracking.
GitHub.

Mengoudi, K., Ravi, D., Yong, K. X., Primativo, S., Pavisic, I. M., Brotherhood, E., ...
Alexander, D. C. (2020). Augmenting dementia cognitive assessment with instruction-

less eye-tracking tests. IEEE journal of biomedical and health informatics, 24(11),

13

https://beam.eyeware.tech/
https://gazerecorder.com/gazerecorder/
https://github.com/antoinelame/GazeTracking

3066-3075.

Papoutsaki, A., Laskey, J., & Huang, J. (2017). Searchgazer: Webcam eye tracking for
remote studies of web search. In Proceedings of the 2017 conference on conference
human information interaction and retrieval (pp. 17-26).

Popa, L., Selejan, O., Scott, A., Mureganu, D. F., Balea, M., & Rafila, A. (2015). Reading
beyond the glance: eye tracking in neurosciences. Neurological Sciences, 36(5), 683—
688.

Real eye. (2024). https://www.realeye.io. (Accessed: 2024-09-01)

Rosebrock, A. (2017). Facial landmarks with dlib, opencv, and python. https://www
.pyimagesearch.com/2017/04/03/facial-landmarks-dlib-opencv-python/. (Ac-
cessed: 2024-09-18)

Samadani, U., Ritlop, R., Reyes, M., Nehrbass, E., Li, M., Lamm, E., ... others (2015).
Eye tracking detects disconjugate eye movements associated with structural traumatic
brain injury and concussion. Journal of neurotrauma, 32(8), 548-556.

Snegireva, N., Derman, W., Patricios, J., & Welman, K. (2018). Eye tracking technology
in sports-related concussion: a systematic review and meta-analysis. Physiological
measurement, 39(12), 12TROL.

Zheng, C., & Usagawa, T. (2018). A rapid webcam-based eye tracking method for human
computer interaction. In 2018 international conference on control, automation and

information sciences (iccais) (pp. 133-136).

14

https://www.realeye.io
\ifx\scrollmode https://www.pyimagesearch.com/2017/04/03/facial-landmarks-dlib-opencv-python/ \scrollmode https://www.pyimagesearch.com/2017/04/03/facial-landmarks-dlib-opencv-python/
\ifx\scrollmode https://www.pyimagesearch.com/2017/04/03/facial-landmarks-dlib-opencv-python/ \scrollmode https://www.pyimagesearch.com/2017/04/03/facial-landmarks-dlib-opencv-python/

	Introduction
	Background and Related Works
	Traditional Eye Tracking Methods
	Optical Tracking
	Electrooculography (EOG)
	Limitations of Traditional Methods

	Webcam-Based Eye Tracking Methods and Its Limitations

	Method
	Environment Setup
	Implementation
	Facial Data Processing
	Model Training
	Gaze Prediction

	Validation Technique
	Stability Test
	Precision Test

	Degree Calculation

	Results
	Results of Stability Test
	Result of Precision Test
	Processing Speed

	Conclusions and Future Work
	References

